A WAVELET METHOD FOR THE FIRST KIND INTEGRAL EQUATIONS WITH KERNEL $k(x-y)$
نویسندگان
چکیده
منابع مشابه
A Modified Degenerate Kernel Method for the System of Fredholm Integral Equations of the Second Kind
In this paper, the system of Fredholm integral equations of the second kind is investigated by using a modified degenerate kernel method (MDKM). To construct a MDKM the source function is approximated by the same way of producing degenerate kernel. The interpolation is used to make the needed approximations. Lagrange polynomials are adopted for the interpolation. The equivalency of proposed m...
متن کاملThe modified degenerate kernel method for the multi-dimensional Fredholm integral equations of the second kind
In this paper, to investigate the multi-dimensional Fredholm integral equations of the second kind a modified degenerate kernel method is used. To construct the mentioned modified, the source function is approximated by the same method which employed to obtain a degenerate approximation of the kernel. The Lagrange interpolation method is used to make the needed approximations. The error and ...
متن کاملDegenerate kernel approximation method for solving Hammerstein system of Fredholm integral equations of the second kind
Degenerate kernel approximation method is generalized to solve Hammerstein system of Fredholm integral equations of the second kind. This method approximates the system of integral equations by constructing degenerate kernel approximations and then the problem is reduced to the solution of a system of algebraic equations. Convergence analysis is investigated and on some test problems, the propo...
متن کاملLegendre wavelet method for solving Hammerstein integral equations of the second kind
An ecient method, based on the Legendre wavelets, is proposed to solve thesecond kind Fredholm and Volterra integral equations of Hammerstein type.The properties of Legendre wavelet family are utilized to reduce a nonlinearintegral equation to a system of nonlinear algebraic equations, which is easilyhandled with the well-known Newton's method. Examples assuring eciencyof the method and its sup...
متن کاملKernel perturbations for convolution first kind Volterra integral equations
Because of their causal structure, (convolution) Volterra integral equations arise as models in a variety of real-world situations including rheological stress-strain analysis, population dynamics and insurance risk prediction. In such practical situations, often only an approximation for the kernel is available. Consequently, a key aspect in the analysis of such equations is estimating the eff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Taiwanese Journal of Mathematics
سال: 1998
ISSN: 1027-5487
DOI: 10.11650/twjm/1500407014